

y(t)

Solution for any initial condition x_0 on the trajectory remains on it as long as the input is held at u_k .

1. *Discretize* the output signal using predefined (user supplied) discretization levels.

> 2. **Record time(s)** of transitions across the discrete boundary values.

3. Extract the **JUMP**(s) at each discrete state for all possible input values.

State-space traversal for the prescribed training inputs.

kth trajectory corresponds to a solution of the DAE:

 $\frac{d}{dt}q(\vec{x}(t)) + f(\vec{x}(t), u_k) = 0$

PhD Advisor: Jaijeet Roychowdhury. Poster template by Felix Breuer.