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Abstract—Recently, a method called STEAM, based on the
MODSPEC modeling API, was published for constructing table-
based representations from generic device models. With STEAM,
using spline interpolants, device evaluation could be accelerated
significantly, leading to somewhere between 8 to 15X speedup
in various analysis, like DC, AC, and transient over the use of
BSIM model for simulation. The accuracy for these analysis was
reported to be less than 0.1% over the entire waveforms for
circuits like inverters and differential pair.
In this paper, we have explored the well established technology
of Barycentric Lagrange Interpolation (BLI) with Chebyshev
sample points for table-based modeling. This method allows
us to use higher order polynomials in a numerically stable
manner, approximating the core device functions to near machine-
precision. The table-models thus created by our approach,
dubbed A-LA-CARTE, are indistinguishable substitutes for the
original compact model. These, at the same time, require far
fewer mathematical operations to evaluate than most commonly
used models like PSP, and BSIM. This makes it possible to
now accelerate accuracy sensitive simulation algorithms like
Harmonic Balance using table-based models by an order-of-
magnitude.

Motivation

The key motivation for this paper comes from Table I, which
shows a count of different mathematical operations required for
running DC analysis on a CMOS inverter circuit using Penn
State-Phillips (PSP), and Berkeley Short-channel IGFET Model
(BSIM) models. This data was collected using the profiler in
Octave while running a DC sweep using Berkeley Modelling
and Prototyping Platform (MAPP). PSP, and BSIM models
were translated from verilog-A using Verilog-A Parser and
Processor (VAPP). Note that some of the most time consuming
operations, involving calls to inbuilt mathematical functions,
like exp, log , . . . , etc., have not been included in this table. The
table simply lists the calls to the basic mathematical operations
involved at the runtime of each device model.
For PSP model, each call involves roughly 11k multiplications,
5k additions, etc. The same numbers for BSIM end up being
close to 2k multiplications, 800 additions etc.

When we use a table-based approximation for the PSP model,
the operation count drops to roughly 50 multiplications, and
80 additions per model evaluation call. Approximation BSIM
with a table based model yields a similar operation count and
has not been described here.

Background and Previous Work
ModSpec
MODel SPECification (MODSPEC)[1] is a model specification
format for describing devices. The key idea behind MODSPEC
is to describe the behavior of a device (electronic or otherwise)
using Differential-Algebraic Equation (DAE)s. In outlining
the fundamental principals of the specification format, it is
assumed that a device’s behavior or description is comprised
of: 1. “inputs”, (labelled ~x), 2. “internal unknowns”, (labelled
~y), and 3. “outputs” (labelled~z), which are explicitly computed
using the “inputs” and “unknowns” using the following DAE
relationship:

~z =
d
dt

qe(~x,~y) + fe(~x,~y),and

~0 =
d
dt

qi(~x,~y) + fi(~x,~y).
(1)

Readers are referred to [1, 2] for details and examples of
MODSPEC, and specifically to [2] for its use and suitability
for table-based device modeling. We build on the work from
Spline-based Tables for Efficient and Accurate device Modeling
(STEAM) to use Barycentric Lagrange Interpolation (BLI) with
Chebyshev points in order to cut down memory requirements,
while also increasing the accuracy at minimal loss in speedup.

Polynomial Interpolation
Since MODSPEC provides a complete description of a device
using four functions, i.e., fe, qe, fi, and qi, we can use several
well-studied function-approximation techniques to approximate
these functions. One of the most commonly used methods for
function approximation is polynomial interpolation.

Lagrange Interpolation
We will consider the case studied previously in [2] with
Spline interpolants, where, the value of a single-input, single-
output function, f (x), is known at a set of knots, labelled
a = x0 < x1 < x2... < xn = b. The Lagrange interpolation
formula [3], interpolates between the known function values
using the following polynomial expression:

L(x) = ∑
i

f (xi)∏ j 6=i (x− x j)

∏ j 6=i xi− x j
(2)

Barycentric-Lagrange Interpolation
Barycentric Lagrange Interpolation formula, as described in [3],
is a computationally efficient way of representing the Lagrange



Analysis Model Calls Time Spent (%) (*) (+) (-) (/) (**)

DC
PSP 7840 366.3s (77.5%) 85679787 37689915 18184544 11983440 5354720

BSIM 5810 71.2s (71.9%) 10640142 4898368 2062882 2028271 888930
STEAM (PSP) 7840 13.3 (46.8%) 412731 653472 223129 156825 0

TABLE I: Comparing the total number of mathematical operations for different transistor models in DC analysis

interpolant. The interpolant B(x) is given by:

B(x) =
∑

i

f (xi)wi

(x− xi)

∑
i

wi

(x− xi)

, where wi =
1

∏ j 6=i (xi− x j)
(3)

Chebyshev Points
Chebyshev points are defined as the roots or extremas of
Chebyshev polynomials. Readers are referred to [4] for a clear
and detailed write-up on this subject. As an illustrative example,
the family of polynomials given by:

Tn(x) = cos
(
n · cos−1(x)

)
, (4)

is called Chebyshev polynomials of the first kind. Chebyshev
points of the first kind of order n are the roots of the polynomial
Tn(x), given by:

ri = cos
((

i+
1
2

)
π

n

)
(5)

Similarly, Chebyshev points of the second kind of order n are
the extremas of the polynomial Tn(x). These are given by the
solutions of Tn(x) =±1.

ei = cos
(

i ·π
n

)
(6)

Chebyshev points of second kind are used in [5], and the
tool described therein, called CHEBFUN because the set of
Chebyshev points of second kind of order n are nested in the
set of Chebyshev points of order 2n. This makes incrementing
the sample values of a function at the Chebyshev points
computationally efficient. Besides, using Chebyshev points
for interpolation with BLI has been shown to be numerically
stable[5, 6].

A-LA-CARTE
In this section, we describe the main additions that we have
made to the existing body of work in this area.

Applying BLI to device models
The continuity of derivatives of the functions describing a
device model is essential for Newton-Raphson (NR) conver-
gence in circuit simulation. In this context, cubic splines seem
to be a natural choice for interpolating sample values of the
device functions as they guarantee the continuity of not only
the first, but also the second derivative across the entire domain.
However, cubic splines or other higher order splines come with
their own demerits.
Cubic splines suffer from numerical conditioning issues, the
interpolation accuracy, for an instance degrades quadratically
with the total number of sample points due to numerical
conditioning. Moreover, cubic splines, or other low order
polynomial interpolants, lack higher order derivatives, which
are important for analyses relevant to Radio Frequency (RF)

design, like Harmonic Balance (HB), Periodic Steady State
(PSS), etc.. The lower order of polynomials also limits the
accuracy of the overall interpolation scheme. We would,
therefore, like to use a piecewise interpolant which is a
polynomial with a reasonably high degree locally, and also
has continuous derivatives across the entire domain. The
requirement of our interpolant being a piecewise polynomial is
important because, otherwise, a very high degree polynomial
has to be fit to capture localized variations. This, is critical for
several analyses, like AC, HB, etc..

Multi-dimensional Piecewise BLI
Several approaches have been proposed to expand an interpo-
lation algorithm to higher dimensions [7–9]. For our purpose,
we have followed the approach of tensor products because of
its simplicity, generalizability to multiple dimensions, and most
importantly, speed. Note that for a tensor product approach
to be feasible, the 1 dimensional interpolation algorithm must
be linear in the sample values (~f mentioned earlier). The
algorithms for both Lagrange interpolant and BLI described
in Sec. II are linear.
In order to extend the BLI interpolation algorithm, mentioned
earlier in (3), consider a scalar function f (x,y) of scalar
variables x and y. Further, let us assume that we have sampled
the function at a rectangular grid of values given by a cartesian
product of points, ~x = [x0,x1, . . . ,xn], and ~y = [y0,y1, . . . ,ym].
This gives us a total of mn sample values. The interpolant will
essentially by the following polynomial expression:

B(x,y) =

n

∑
i=0

gi(y)wi

(x− xi)
n

∑
i=0

wi

(x− xi)

, where gi(y) =

m

∑
j=0

f (xi,y j)w j

(y− y j)

m

∑
j=0

w j

(y− y j)

(7)

Here, for a query point (xq,yq), most of the computation
happens exactly once. The fractions w j

(y−y j)
have to be computed

exactly once, making the computation of gi(y) a highly
parallelizable matrix-multiplication. This is especially the case
when we are interpolating device functions, which are not
scalar, but a collection of multi-output functions [~fe,~qe, ~fi,~qi]

T .

Results
We implemeted both BLI with Chebyshev sample points, and
spline interpolants with uniform sample points in MAPP[10].
The interpolation algorithms themselves are quick to prototype
and interface with the MODSPEC API. Generating a spline
interpolant require some heavy-lifting. Unlike splines, generat-
ing a BLI interpolant doesn’t require the solution to a matrix
equation system, making the generation of the interpolant
quite practically insignificant. It is important, however, to have
extrapolation for BLI polynomials as they are very unstable
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Fig. 2: Showing the first 1024 Chebyshev series coefficients for ic of a diode-connected
PSP model

Method Pieces Total Measured
Coefficients Error

Single Polynomial 1 257 5.24e-6
1 2049 5.98e-13

Uniform Pieces 16 272 9.12e-7
32 2080 4.89e-13

Hand-picked Split 8 70 4.92e-13
TABLE II: Required Polynomial Coefficients (or table size) for reconstructing PSP/ fe

outside the domain [−1,1]. We used linear extrapolation to
maintain continuity and differentiability at the extrapolation
boundary.

Evaluating Device Functions
We will now look at the applicability of BLI method for device
models.

Fig. 1: Schematic of
a diode con-
nected MOS-
FET

Consider a diode connected Metal-Oxide
Semiconductor Field Effect Transistor
(MOSFET) as shown in Figure 1, modeled
with BSIM and PSP models with only
one input, called vc. For simplicity, we
have ignored terminal resistances from the
model, making it a 1-port device. It can be
completely characterized by providing, for
any terminal voltage vc, a DC current term
ic and a dynamic term qc. A table-based
model for the diode-connected MOSFET
must reconstruct these two functions, ic(vc),
and qc(vc).
?? shows the Chebyshev series coefficients
for the input current ic obtained from the

PSP model. One can notice that after ∼ 800 indices, the
coefficients are not numerically significant to contribute to
any error in the table-based model. Therefore, if we were to
construct a BLI with more than 800 Chebyshev sample points,
it would reconstruct the model to near-machine precision.
If one looks at the segment of Table II that refers to single
piece as the method, one can notice that the mean point-wise
relative error does indeed drop significantly when the number
of sample points is dropped from 513 to 1025.

Elementary analyses algorithms
For the subsequent experiments involving analyses algorithms,
we compare PSP and BSIM algorithms with table-based

Method Pieces Total Measured
Coefficients Error

Single Polynomial 1 257 3.81e-4
1 2049 4.68e-6

Uniformly Spaced 16 272 6.59e-5
32 2080 1.17e-7

Hand-picked Split 8 40 3.35e-14
TABLE III: Required Polynomial Coefficients (or table size) for reconstructing BSIM/ fe
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Fig. 3: Error in simulating a CMOS inverter for QSS using STEAM and A-LA-CARTE

models constructed using spline interpolants and BLI. The
2-dimensional piecewise BLI interpolant was constructed with
32 pieces uniformly splitting the domain [−1,1]V. Each piece
had a local polynomial of degree 33 in both the dimensions.
The 2-dimensional spline interpolant was constructed on a
uniform grid of 165x165 points for it to have the same number
of sample points as the piecewise BLI interpolant. The accuracy
and speedup for these interpolants wrtto the baseline models,
PSP, and BLI, can be seen in ?? and ?? respectively.

Quiescent Steady State (QSS) and Transient Analysis
Having compared our approach with STEAM for evaluating
device functions, i.e., fe, qe, fi, and qi, we now analyze the
overall accuracy of QSS (or DC analysis) and Transient analysis
using the two approaches. We ran a QSS sweep for a CMOS!
(CMOS!) inverter , and Gilbert Cell.
Figure 3 show simulation results for a CMOS Inverter com-
paring an approximation with spline interpolants and BLI with



CIRCUIT Error Speedup Error Speedup
BLI BLI STEAM STEAM

CMOS Inverter 6.0e-12 2.6 6.2e-4 2.5
Ring Oscillator 5.0e-12 2.9 1.5e-3 2.7

Differential Pair1 3.8e-12 2.3 1.1e-8 2.2
Gilbert Cell 8.1e-12 2.8 7.9e-8 2.6

TABLE IV: Runtime and Error analysis for Transient Analysis with various circuits
using BSIM Model

CIRCUIT Error Speedup Error Speedup
BLI BLI STEAM STEAM

CMOS Inverter 1.1e-13 8.6 1.8e-9 13.2
Differential Pair 7.9e-16 11.0 1.4e-10 10.8

Gilbert Cell 5.1e-16 13.7 2.8e-10 12.9
TABLE V: Runtime and Error analysis for QSS with various circuits using PSP Model

Chebyshev sample points.

Accuracy Sensitive Applications
The error numbers obtained in previous sections (Sec. IV-A)
motivate the use of our approach for table-based device
modeling in these applications.
Some of the methods used for analyzing analog circuits that
have periodic behavior include PSS (or Shooting) and HB. In
this section, we compare the results from the approach used in
[2] and A-LA-CARTE. Accuracy sensitive applications, like
RF design, highlight the important differences in accuracy
between the two methods. This is especially true for a method
like HB that implicitly depends on the accuracy of higher order
derivatives

Harmonic Balance
HB is a mixed time-frequency domain analysis that is used
for analyzing oscillatory circuits. It can be applied to both
autonomous systems, like oscillators, and systems driven by
periodic signals like amplifiers. We applied both the approaches
to accelerate HB for the kinds of simulations. For the former
case, i.e., analysis of oscillators, HB computes both the
oscillation frequency and the amplitude of various harmonics
corresponding the oscillation frequency.

References
[1] D. Amsallem and J. Roychowdhury. ModSpec: An open, flexible

specification framework for multi-domain device modelling. In Computer-
Aided Design (ICCAD), 2011 IEEE/ACM International Conference on,
pages 367–374. IEEE, 2011.

[2] A. Gupta, T. Wang, A. G. Mahmutoglu, and J. S. Roychowdhury. Steam:

0 0.5 1 1.5 2

TIME (in s) 10
-6

-2

-1

0

1

2

V
O

U
T

(v
o
lt
s
)

10
-15

BLI - vout

BLI - e(S)

Fig. 4: Error in Transient Simulation of a Gilbert Cell with A-LA-CARTE

Fourier comp. magnitudes, freq=5.910600e+06 (Hz)

-50 -40 -30 -20 -10 0 10 20 30 40 50

Harmonic Number

-300

-200

-100

0

 2
0

 l
o

g
1
0
V

(w
)

e_inv1

Time-domain waveforms, period=1.691876e-07 (sec)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Time (sec) 10
-7

-1

0

1

2

V
 (

v
o

lt
s
)

10
-12

e_inv1

(a) BLI

Fourier comp. magnitudes, freq=5.910600e+06 (Hz)

-50 -40 -30 -20 -10 0 10 20 30 40 50

Harmonic Number

-100

-50

0

2
0

 l
o

g
1
0
V

(w
)

e_inv1

Time-domain waveforms, period=1.691876e-07 (sec)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Time (sec) 10
-7

-2

0

2

V
 (

in
 V

o
lt
s
)

10
-4

e_inv1

(b) STEAM
Fig. 5: Time-Frequency domain error in Harmonic balance for a 3-stage ring oscillator

circuit.

Spline-based tables for efficient and accurate device modelling. In 2017
22nd Asia and South Pacific Design Automation Conference (ASP-DAC),
pages 463–468, Jan 2017.

[3] Jean-Paul Berrut and Lloyd N Trefethen. Barycentric lagrange interpola-
tion. SIAM review, 46(3):501–517, 2004.

[4] A. Gil, J. Segura, and N. Temme. Numerical Methods for Special
Functions. Society for Industrial and Applied Mathematics, 2007.

[5] Rodrigo B Platte and Lloyd N Trefethen. Chebfun: a new kind of
numerical computing. Progress in industrial mathematics at ECMI 2008,
pages 69–87, 2010.

[6] Nicholas J Higham. The numerical stability of barycentric lagrange
interpolation. IMA Journal of Numerical Analysis, 24(4):547–556, 2004.

[7] Carl De Boor. A practical guide to splines, volume 27.
[8] Volker Barthelmann, Erich Novak, and Klaus Ritter. High dimensional

polynomial interpolation on sparse grids. Advances in Computational
Mathematics, 12(4):273–288, 2000.

[9] Alex Townsend and Lloyd N Trefethen. An extension of chebfun to two
dimensions. SIAM Journal on Scientific Computing, 35(6):C495–C518,
2013.

[10] T. Wang, A.V. Karthik, B. Wu and J. Roychowdhury. MAPP: A platform
for prototyping algorithms and models quickly and easily. In IEEE MTT-S
International Conference on Numerical Electromagnetic and Multiphysics
Modeling and Optimization (NEMO), pages 1–3. IEEE, 2015.


	Motivation
	Background and Previous Work
	ModSpec
	Polynomial Interpolation
	Lagrange Interpolation
	Barycentric-Lagrange Interpolation

	Chebyshev Points

	A-LA-CARTE
	Applying BLI to device models
	Multi-dimensional Piecewise BLI

	Results
	Evaluating Device Functions
	Elementary analyses algorithms
	QSS and Transient Analysis

	Accuracy Sensitive Applications
	Harmonic Balance



