Motivation

In previous work, titled "STEAM: Spline-based Tables for Efficient and Accurate device Modeling", we developed a table-modeling framework based on MODSPEC.

 $q_e(x), f_e(x), q_i(x), f_i(x)$

Key Idea: 4 functions completely describe a device model. An approximation of the functions is an approximation for the device model itself.

Previous method used low order spline interpolants for accurate and fast interpolation. The memory requirements for any degree of accuracy are shown.

Chebyshev series coefficients: How many sample points do we need for a desired level of accuracy?

> BLI SPLINE

Coeff. Index

Barycentric Lagrange Interpolation

BLI's performance depends largely on the choice of the set of sample points

It is known to be very stable if Chebyshev points are used as the sample points (Available for use in a package called CHEBFUN)

for uniform points, whereas for **Chebyshev Points:**

Can we do significantly better? Say floating point precision!

Reconstruction Error with Spline and BLI Compared Highly for f(x) Accurate Table Representations using Chebyshev samples with Barycentric Lagrange **Interpolant**

Original -BLI -SPLINE

Archit Gupta University Of California, Berkeley

V_{DD}

 $T_n(x) = \cos(n \cdot \cos^{-1}(x))$

Their roots and extremas are

V (volts)

Ant Ant Ant

×10⁻¹² Time-domain waveforms, period=1.691876e-07 (sec) **Harmonic Balance** results for a 3-Stage ring oscillator with BLI 0.2 0.4 0.6 1.6 0.8 1.2 1.4 ×10⁻⁷ Time (sec)

Test function: Gaussian

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Harmonic Balance results for a **3-Stage ring oscillator with STEAM**

Chebyshev Points

Any function can be approximated by a series of weighted **Chebyshev polynomials, called a Chebyshev Series**

Coefficients for Chebyshev series can be computed using DCT Convergence properties are similar to a Fourier series Can be easily expressed using BLI

> Chebyshev Polynomials

This work was supported in part by Semiconductor Research Corporation (SRC) Poster template based on design by Felix Breuer.

